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Abstract: Stand volume can be estimated from other stand variables by using

multiple linear regression (MLR) or other ordinary regression mod-

els. MLR, however, only produces global parameter estimates that

cannot reveal spatial variations in stand variables. In this study,

we used a geographical weighted regression (GWR) method to in-

vestigate local spatial variations in the relationship between stand

volume, stand age, and basal area of Acacia mangium plantations,

and to examine whether a GWR model could provide better predic-

tion accuracy than an MLR model. Stand data and geographical

coordinates were obtained from 247 plantation sample plots. We

analyzed the data using MLR and GWR methods by formulating a

linear model that relates stand volume to stand age and basal area.

Performance of the GWR model was compared with the MLR model

in terms of their parameter estimates and goodness-of-fit statistics.

We found that the GWR model was not only able to reveal local

spatial variations in the relationship between stand volume, stand

age, and basal area, but it also produced better prediction accuracy

than the MLR model. The GWR model reduced AIC by 2%, in-

creased R2
adj up to 3%, and reduced RMSE by 14%, compared with

those of the MLR model. The GWR model, therefore, could be use-

ful for modeling spatial variations in stand attributes that cannot be

revealed by ordinary regression models.
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1. Introduction

Information about forest resources is essential for forest managers
to manage their forests in appropriate ways. Among others, stand
volume is still considered to be an important stand variable (Husch
et al., 2003), which is commonly used by forest managers to estimate
financial benefits from their forests. Stand volume can also be used to
quantify forest biomass by using a volume-biomass model (e.g., Fang et
al., 1998). Estimation of stand volume is therefore an important aspect
in forest management.

Stand volume can be estimated from other stand variables (e.g., basal
area, height, age, and the number of trees) by using a stand volume
equation (Clutter et al., 1988, Husch et al., 2003). Traditionally, ordi-
nary linear or nonlinear regression (see e.g., Draper and Smith, 1998)
is often used to develop a stand volume equation. For instance, Vélez
and Valle (2007) used a simple power model to estimate stand volume
from basal area of Acacia mangium plantations in Colombia. There is
no doubt that a stand volume equation derived from an ordinary re-
gression model has provided a useful tool for forest management. The
ordinary regression model, however, has a limitation because it pro-
duces a global model that assumes the stationary of model parameters,
meaning that the effect of each predictor is constant over the whole
study area. For instance, if a global model estimates stand volume
from basal area, then the estimated stand volume at a certain location
will be the same as that of other locations with the same level of basal
area. In reality, it is not always true because the relationship between
basal area and stand volume might vary from one location to another as
the result of local spatial variations. Because the global model cannot
represent spatial variations in the relationships among stand variables,
it would produce less accurate predictions. It is therefore the global
model would less appropriate for detail spatial forest planning in which
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precise information of forest resources at every location is desirable.
One of the promising methods for modeling local spatial variations

is geographically weighted regression (GWR, see Fotheringham et al.,
2002). The basic idea of GWR is capturing spatial variation by fitting
regression models at each location. It means that each location has a
set of model parameters that may differ from other locations. Thus,
GWR extends a global regression model to account for spatial non-
stationary in the relationship between observed variables across space
(Fotheringham et al., 2002, Miller et al., 2007).

Although GWR has initially gained popularity in the fields of human
geography and socio-economics (Fotheringham et al., 2002, Kupfer and
Farris, 2007, Miller et al., 2007), several studies have also confirmed the
usefulness of this method for forestry applications. Zhang et al. (2004)
showed that GWR outperformed ordinary regression for predicting in-
dividual tree heights of a forest stand. Zhang and Shi (2004) as well
as Kupfer and Farris (2007) provided other evident that basal area was
better predicted by using GWR rather than ordinary regression. Simi-
larly, Wang et al. (2005) also concluded that GWR was better than or-
dinary regression for predicting net primary production, whereas Kim-
sey et al. (2008) confirmed such conclusion when they used GWR for
predicting site index.

While those previous studies have used GWR for modeling spatial
variations in tree heights, basal area, net primary production, and
site index of forest stands, there is still lack of study that used GWR
for modeling spatial variations in stand volume, especially for Acacia
mangium plantations. In this study, we used GWR to investigate local
spatial variations in the relationship between stand volume, stand age,
and basal of Acacia mangium plantations in West Java, Indonesia. We
were particularly interested to explore whether local variations of stand
age and basal area might give different effects to stand volume and to
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examine whether GWR model could provide better prediction accuracy
than MLR model.

2. Material and Methods

2.1. Data

This study used forest inventory data collected from Acacia mangium
plantations located in Bogor, West Java, Indonesia (6◦ 21’0”-6◦24’3”
S, 106◦26’7”-106◦29’58” E). The total plantation areas is 1466.44 ha,
which is mostly located on flat and gently undulating terrains (0-8%)
with a mean annual rainfall of 3000 mm. The plantations are usually
thinned at 3, 5, and 7 years, which are then harvested at 10-12 years to
produce timbers for building and furniture materials (Perum Perhutani,
2006).

Data on stand volume, stand age, and basal area were collected from
247 circular sample plots with sizes ranging from 0.02 to 0.1 ha. To
cover the spatial variations of plantations, the sample plots were estab-
lished systematically (with interval of about 200 m) in 16 compartments
within the study area. Besides stand variables data, the geographical
coordinates (UTM system at zone 48S) of plot centers were also used
in data analysis.

2.2. Statistical analysis

The data were analyzed using ordinary multiple linear regression
(MLR) and GWR methods. The results of both methods were then
compared and evaluated in terms of their parameter estimates and
goodness-of-fit statistics.

We first explored the data set and found that stand volume had
strong correlations with stand age (r = 0.62) and basal area (r = 0.94),
while there was no strong correlation (r = 0.34) between stand age
and basal area. These results suggested that stand age and basal area
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were appropriate predictors for stand volume, besides they are easier
to measure in the field than other stand variables (e.g, height and
site index). The stand volume (response variable) was assumed to
be a random variable from a normally distributed population. We
formulated the global model using MLR as follows:

yi = β0 + β1x1i + β2x2i + εi[1]

where yi is stand volume (m3/ha), x1i is stand age (years), x2i is basal
area (m2/ha) at sample plot i, β0, β1, β2 are model parameters, and
εi is random error term that follows a normal distribution with mean
zero and variance σ2. Model parameters were estimated using ordinary
least squares (OLS) as commonly used in MLR (see Draper and Smith,
1998):

β̂ =
�tXX

�−1 tXy[2]

where t denotes the transpose of a matrix. The analysis of MLR model
was performed using R version 2.8.1 (R Development Core Team, 2009).

While global models only produce single coefficient for each param-
eter (as Eq. [1]), GWR generates local coefficients for each parameter
by integrating geographical coordinates of the sample plots (Fothering-
ham et al., 2002). In GWR, therefore, the relationship between stand
volume, stand age, and basal area was formulated as follows:

yi = β0(ui,vi) + β1(ui,vi)x1i + β2(ui,vi)x2i + εi[3]

where (ui, vi) are geographical coordinates of sample plot i.
It is clear from [1] and [3] that GWR extends MLR model by gener-

ating local coefficients for each parameter. GWR estimates local coef-
ficients at a sample point based on its neighboring observations within
a certain distance (called as a bandwidth) that are weighted using a
weighting function (called as a spatial kernel). Observations closer to
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the sample point will give more weight or influence in determining the
local coefficients. Thus, the weights of neighboring observations are
controlled by a bandwidth (expressed in radius or number of obser-
vations), which is either fixed bandwidth or adaptive bandwidth, of a
spatial kernel (Fotheringham et al., 2002). In this study, we used the
adaptive bandwidth with Gaussian kernel function as follows:

wij = exp
 

−0.5 (dij/h)2
!

[4]

where wij is a weight for an observation at location j around the sample
plot i, dij is distance between locations i and j, and h is bandwidth. To
obtain an optimal bandwidth, we used the minimization of AIC defined
as follows (Fotheringham et al., 2002):

AIC = 2n log
�
σ̂2�

+ n log (2π) + n


n + tr (S)
n − 2 − tr (S)

�
[5]

where n is the total number of sample plots, σ̂ is the estimated standard
deviation of the error term, and tr(S) is the trace of hat matrix S

that maps the vector of estimated values into the observed values (i.e.,
ŷ = Sy). In our study, the optimal bandwidth was 4.8% of the total
sample that is closest to a certain data point (in average about 11 of
247 observations). To ensure the appropriateness of the kernel function,
we also tested Gaussian and bi-square with fixed bandwidth kernel
functions, but, none of them produced lower AIC than that of the
Gaussian kernel with adaptive bandwidth.

The weights derived from the Gaussian kernel function were then
used by GWR to estimate local coefficients for each parameter using a
weighted least squares regression (Fotheringham et al., 2002):

β̂i =
�tXWiX

�−1 tXWiy[6]
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where Wi is a spatial weighting matrix of the form:

Wi =

⎛

⎜⎜⎜⎝

wi1 0 · · · 0
0 wi2 · · · 0
...

...
. . .

...
0 0 · · · win

⎞

⎟⎟⎟⎠
[7]

All calculations of GWR were performed using spgwr package of the
R software (Bivand and Yu, 2009). Further statistical theories related
to GWR can be found in Fotheringham et al. (2002) and some papers
(e.g., Zhang et al., 2004, Zhang and Shi, 2004).

The presence of non-stationary in the relationship between stand vol-
ume, stand age, and basal area was examined by comparing the model
parameters of GWR and MLR. If the inter-quartile range of GWR is
greater than the range of β± standard error (SE) of MLR, this indicates
the presence of non-stationary in model parameters (Fotheringham et
al., 2002). To illustrate spatial variations in the relationship between
stand volume, stand age, and basal area, we mapped the local param-
eter estimates and model R2

adj . In addition, we further explored cor-
relation between GWR coefficient estimates to examine the possibility
of multicollinearity among the local coefficients as studied in detail by
Wheeler and Tiefelsdorf (2005). We then compared the goodness-of-fit
statistics of MLR and GWR models by using AIC, adjusted coefficient
of determination (R2

adj), and root mean square error (RMSE) values.
The model with the highest AIC and R2

adj values, but lowest RMSE,
was considered to be an appropriate model for predicting stand volume.

3. Results

3.1. MLR model

MLR model showed that stand volume could be well predicted from
stand age and basal area (Tab. 1). The model explained about 96% of
the total variations in stand volume of Acacia mangium plantations.
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Table 1. Parameter estimates of the MLR and GWR models for
predicting stand volume of Acacia mangium plantations

Model Statistics Model parameter

Intercept (β0) Age (β1) Basal area (β2)

MLR Estimate -23.0447∗∗ 3.3251∗∗ 5.6403∗∗

Standard error (SE) 1.003 0.145 0.094

βi−SE -24.048 3.180 5.547

βi+SE -22.042 3.470 5.734

GWR Minimum -41.030 1.419 3.975

25% quartile -24.630 2.841 5.339

Median -22.340 3.165 5.640

75% quartile -19.060 3.480 6.060

Maximum -14.230 6.177 6.901

Note) ∗∗ Significant at p < 0.001

The regression coefficients for stand age and basal area were positive
and significant (p < 0.001), meaning that stand volume increased at
older stands and higher basal area. Obviously, MLR model only pro-
vided single coefficient for each independent variable, whereas varia-
tions in stand age and basal area were only measured by their standard
errors. Compared to basal area, stand age had a higher standard error,
meaning that it was more variable than basal area in their relationship
to stand volume.

The predictive performance of MLR model seemed to be less accurate
(Fig. 1a). The model underestimated stand volumes in the low range (<
12m3/ha) and high range (> 60m3/ha). There were also some obvious
outliers in the middle range (13-59 m3/ha), indicating overestimated
stand volumes.

3.2. GWR model

Unlike MLR model, GWR model provided varying coefficients for
each parameter (Tab. 1). Model intercepts varied from −41.03 to
−14.23, whereas local coefficients for stand age varied from 1.42 to
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Figure 1. Scatter plots between predicted and actual
stand volumes from (a) MLR and (b) GWR models

6.18, and those for basal area varied from 3.98 to 6.90. The wider
range of local coefficients for stand age indicated that local variations
in stand age were greater than those in basal area. The local effects of
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Figure 2. Spatial distribution of the local (a) intercepts, and (b)
coefficients for stand age obtained from the GWR model

basal area to stand volume, however, were greater than those of stand
age, because basal area had slightly higher local coefficients.

Spatial distribution of the model intercepts (Fig. 2a) showed that the
effects of intercepts to stand volume estimates were different from one
location to another. There was, indeed, non-stationary in the model
intercepts because the inter-quartile range (−24.630 to −19.060) of the
GWR’s intercepts was outside the range of β±SE (−24.048 to −22.042)
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Figure 2. (cont.) Spatial distribution of the local (c) coefficients
for basal area, and (d) adjusted coefficients of determination

(R2
adj) obtained from the GWR model

of the MLR’s intercept.
Similar to the global model result, the local coefficients for stand

age were also positive, meaning that local stand volumes tended to
increase with increasing stand ages. GWR model, however, clearly
showed that the effects of stand age to stand volume varied from one
location to another (Fig. 2b), indicating that there was a non-stationary
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Table 2. Goodness-of-fit statistics of the MLR and GWR models

Model R2
adj (%) RMSE AIC

MLR 96.09 4.68 1468.35
GWR 90.89–98.87 4.04 1442.24

in stand age across the study area. The inter-quartile range of stand age
(2.841 − 3.480), which was outside the range of β ± SE (3.180 − 3.470)
of MLR model, has also confirmed the presence of non-stationary in
stand age (Tab. 1).

The local coefficients for basal area were also positive but slightly
higher than those for stand age, meaning that local stand volumes
increased at stands with higher basal areas. There were obvious clus-
tered patterns in spatial distribution of the local coefficients of basal
area (Fig. 2c). For instance, the lower parts of south-west areas had
higher basal area effects than the lowest parts of north areas. The non-
stationary of basal area was also indicated by the inter-quartile range
(5.339 − 6.060) of GWR model that was slightly beyond the range of
β ± SE of MLR model (5.547 − 5.734, Tab. 1).

While the effects of local stand age and basal area could be expressed
by their local coefficients, total variations in local stand volumes ex-
plained by these stand variables could be quantified by the local ad-
justed coefficients of determination (R2

adj). The local R2
adj values var-

ied from 90.89% to 98.87% (Fig. 2d), showing that the majority (about
83%) of sample plots were fitted by GWR with R2

adj larger than that
of MLR model (R2

adj = 96.09%). The spatial distribution of local R2
adj

values seemed to be similar with that of basal area (Fig. 2d, 2c), i.e.,
clustered spatial patterns, which indicated that the local variation of
stand volume was more influenced by the local variation of basal area
than stand age.
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Table 3. Coefficients of correlation
between local GWR coefficient estimates

Intercept(β0) Age(β1) Basal area(β2)

Intercept(β0) 1.000 -0.589 -0.223
Age(β1) 1.000 -0.647

Basal area(β2) 1.000

Compared to MLR model, GWR model performed better in predict-
ing local stand volume as indicated by their goodness-of-fit-statistics
(Tab. 2). GWR model reduced AIC by 2% (about 26 scores), increased
R2

adj up to 3%, and reduced RMSE by 14%. The scatter plot between
predicted and actual stand volumes (Fig. 1b) also showed that GWR
model made remarkable improvements in the prediction of stand vol-
ume compared with that of MLR model (Fig. 1a). In addition, GWR
model did not produce strong correlations between the local coefficient
estimates (Tab. 3), indicating that multicollinearity among the local
coefficients might not exist.

4. Discussion

The results showed that the effects of stand age and basal area were
not constant over the study area, which resulted in the variability of
stand volume of Acacia mangium plantations. This is reasonable be-
cause stand volume tends to vary from one location to another de-
pending on their site productivities, which can be affected by natural
and management factors (Skovsgaard and Vanclay, 2008). Although
we lack of site index data to measure site productivity, the variations
of stand volume in the lower, middle and higher ranges of Fig. 1 could
indicate that site productivity varied over the study area. It was dif-
ficult to observe natural factors inherent to the plantation sites, but
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we recognized that thinning seems to be a possible management factor
contributed to the variability of stand conditions. During the field-
work, we observed that thinning varied considerably in their intensity
and timing. Although the company has scheduled thinning periodically
when stands reach 3, 5, and 7 years old, some stands at those ages were
not thinned due to budget constraints. Such thinning practice would
create variability in basal area and volume growths of the plantations,
even within stands at a particular age. Vélez and Valle (2007) observed
that frequent low thinning has caused the low growth of basal area and
volume of Acacia mangium plantations in Colombia.

It is not surprising that MLR model produced less accurate predic-
tions because this classical regression model does not take into account
spatial variations in the stand variables. The MLR model only fitted a
single function (Tab. 1) to all observations from various locations, hence
its predictions might be close to the actual stand volumes at a certain
location but it would be bias at other locations whose higher spatial
variations in their basal area and stand age. Indeed, the model ignores
a reality that stand volumes tend to vary according to local site condi-
tions. It is reasonable if MLR model underestimated stand volume at
the lower and higher ranges but it overestimated stand volume at the
middle range (Fig. 1a), because this model does not consider the local
spatial variations of stand variables. Similar result was also reported
by Wang et al. (2005) who observed that MLR model underestimated
net primary production (NPP) in the higher range but it overestimated
NPP in the lower range.

On the other hand, GWR model indeed accounted for local spatial
variations in the stand variables because it predicted stand volumes us-
ing appropriate local parameters derived from only several neighboring
observations (instead of all observations as used in MLR model) within
the bandwidth. A location dominated with smaller trees would have



Modeling Spatial Variation in Stand Volume 117

different model parameters to another location dominated with larger
trees (Fig. 2), so that their predicted stand volumes would be different
as well. Accordingly, local variations in site productivity of the plan-
tations can be captured adaptively by GWR model, which resulted in
more accurate predictions compared with those of MLR model. This
result is consistent with previous studies (e.g., Zhang et al., 2004, Zhang
and Shi, 2004, Wang et al., 2005, Kupfer and Farris, 2007, Kimsey et
al., 2008), which proved that GWR model produced better prediction
accuracy than classical regression techniques. In our study, about 83%
of the local R2

adj (Fig. 2d) was higher than the global R2
adj (= 0.961), in-

dicating that GWR model produced a better explanatory ability with
a greater accuracy (Fig. 1b) than MLR model. The model does not
only account for the effects of stand age and basal area (as MLR model
does), but it also integrates local spatial information that inherent to
the stand variables (that cannot be captured by MLR model). These
results are expected because forest managers will have more accurate
stand volume estimates, hence uncertainty in estimating timber bene-
fits could be reduced accordingly.

Despite the advantages, there are some possible shortcomings of
GWR method. First, GWR (as also the case for other spatially-based
methods) requires more data than MLR or other classical regression
models. Unlike MLR, which is non spatially-based method, GWR also
requires sample plots data with known geographical coordinates in or-
der to predict local coefficients at a certain location based on neigh-
boring observations. It should not be a serious problem, however, if
the existing forest inventory provides extensive data in which the geo-
graphical coordinates of sample plots could be easily measured by using
a GPS (Global Positioning System) device. Second, GWR could not
directly produce predictions at un-sampled locations, unless the loca-
tions have known values of each independent variable (e.g., elevation,
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aspect, and normalized different vegetation index). It is therefore we
could not able to produce surface map showing the spatial distribution
of stand volumes over the study area, because there were no data for
the stand age and basal area at un-sampled locations. When data for
each independent variable are available at every location, such as those
derived from a digital elevation model (DEM), it is possible to produce
a map showing continuous predictions over space as demonstrated by
Kupfer and Farris (2007) for predicting basal area as well as Kimsey
et al. (2008) for predicting site index. When such data are unavail-
able, however, it is still possible to produce a surface map of a pre-
dicted variable by using geostatistics as demonstrated by Tiryana et al.
(2009) for predicting carbon stocks in the study area. The last issue is
that GWR may produce multicollinearity among local coefficients that
can invalidate their interpretation (Wheeler and Tiefelsdorf, 2005). In
our study, there were only moderate negative correlations between the
local coefficient estimates (Tab. 3), so that the GWR results are still
reliable. Nevertheless, as discussed by Wheeler and Tiefelsdorf (2005),
GWR method would be more suitable for exploring spatial variations
in stand attributes, but, it would be less appropriate for generating
continuous spatial predictions.

5. Conclusion

This study showed that GWR model was able to reveal spatial vari-
ations in the relationship between stand volume, stand age, and basal
area. The effects of stand age and basal area to stand volume varied
considerably from one location to another, which might be caused by
differences in thinning. Because the GWR model accounted for the lo-
cal variations in the stand variables, it could produce better prediction
accuracy than MLR model. It reduced AIC by 2%, increased R2

adj up
to 3%, and reduced RMSE by 14%. The GWR models would there-



Modeling Spatial Variation in Stand Volume 119

fore be useful for exploring spatial variations in stand attributes, which
could not be revealed by using ordinary regression models.
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